Complex Event processing for Time evolving graphs

Charith Wickramaarachchi
cwickram@usc.edu

Image source: http://whatis.techtarget.com/definition/3Vs
Volume

• Batch processing
 • Map-Reduce
 • Pregl
 • Impala
 • GoFFish/Gopher

Image source: http://wikibon.org/wiki/v/Real-time_IO_Centric_Processing_for_Big_Data
Downsides of Batch processing

- Jobs must be run through to completion
- Data changes might cause to re-run the operations
- Will not work for some BI applications – acting in minutes/seconds is significant
- Value of Data degrades over time
• Complex Event processing
 ◦ combines data from multiple sources
 ◦ detect patterns
 ◦ attempt to identify either opportunities or threats

• Operational Intelligence (OI)
 ◦ real time data processing + CEP
 ◦ insight into operations by running query analysis against live feeds and event data

http://srinathsvi...
Current usage

- Detect customer buying patterns
 - Historical data + real time data
- Assembly lines
 - Reduce time, Detect Errors
- Social media threat monitoring
 - React to negative posts, tweets

<table>
<thead>
<tr>
<th>Solution</th>
<th>Organization</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storm</td>
<td>Twitter</td>
<td>Streaming</td>
<td>Twitters streaming big-data analytics solution</td>
</tr>
<tr>
<td>S4</td>
<td>Yahoo</td>
<td>Streaming</td>
<td>Stream computing platform Yahoo</td>
</tr>
<tr>
<td>Hadoop</td>
<td>Apache</td>
<td>Batch</td>
<td>Map-Reduce Impl</td>
</tr>
<tr>
<td>Spark</td>
<td>AMPLab USB</td>
<td>Batch</td>
<td>In Memory data analytics</td>
</tr>
<tr>
<td>Disco</td>
<td>Nokia</td>
<td>Batch</td>
<td>Map reduce</td>
</tr>
<tr>
<td>HPCC</td>
<td>LexisNexis</td>
<td>Batch</td>
<td>HPC cluster for Big-data</td>
</tr>
</tbody>
</table>
• Twitter's distributed and fault tolerant stream processing engine.

• Key Concepts
 ◦ Tuples: Ordered List of Elements
 ◦ Streams: Unbounded seq^n of Tuples
 ◦ Spouts: Stream source
 ◦ Bolts: Processing units which consumes streams and create new ones (Pellets in Floe)
• Topology: Directed Graph of Spouts and Bolts

Word count

Source:
https://github.com/nathanmarz/storm/wiki/Tutorial
From Last week...

- Early work on Big data processing
 - More focus on volume and verity dimensions
- “Big Data in Real time” getting lot of traction.
- State of the art
 - OI, CEP, Steam processing
 - Twitter storm
Overview for this week..

- Complex event processing systems
 - Overview
 - Operation abstractions
- Motivational problems /use cases
- Hypothesis
- Open problems
- Related work
- Directions ? Feedback ?
Complex Event Processing

- Processing that combines data from multiple sources and infer events or patterns that suggest more complex scenarios

- Queries
 - Filters
 - Windows
 - Joins
 - Patterns and Sequences
 - Event Tables
 - Partitions

[Image: http://srinathsview.blogspot.com/2013/08/understanding-complex-event-processing.html]
Motivation

- Early pattern identification in dynamic graphs
 - False rumor detection on social networks
 - Early fault detection and prevention in sensor networks/data centers
 - D2R use cases in Smart grid?
Hypothesis: Online graph event detection system, that consider data streams as streams of updates, to a changing dynamic graph, enable “better” online graph analytics and event detection.
Big Picture

Dynamic graph streams

System X

DSL - X

Events
Example Queries

- Find a Formation of a Cluster with diameter 8
- Find a formation of a path of length 5
- Find a Cluster transformation
- Find a Cluster destruction
• Applications
• Language model for online graph pattern detection
• Processing models which compiles this language and perform pattern detection
 ◦ Distribution of Graph
 ◦ Performance optimizations
 ◦ Pattern Matching algorithms.

Open problems
Related work

- Towards Efficient Query Processing on Massive Time-Evolving Graphs, Arash Fard at al... (Survey paper)
 - Partitioning time evolving graphs. (When to do re partitioning, Node replication to minimize communication)
 - Sub graph pattern marching on TEG.
 - Using diffs in different graph snapshots (Using Sparse bit matrices)
• Kineograph: Raymond at al..
 ◦ In memory graph storage
 ◦ Create time snapshots of dynamic graph
 ◦ Supports iterative propagation based graph mining.
• An Event-based Framework for Characterizing the Evolutionary Behavior of Interaction Graphs, Sitaram Asur et al...
 ◦ Defines set of critical events in time evolving graphs
 • K-Merge – (k% merge)
 • K-Split
 • Form
 • Dissolve etc..
• Graph pattern matching, dynamic graph analytics getting some traction.
• The growth of “network” big data require a new class of real time data processing mechanisms
• Fast online analytics on dynamic graphs is a still a wide open research area.
Questions ? Directions ? Feedback ?